

Hydrogen from renewables enables sector coupling between energy, industry and mobility

Today, approx. 95% of hydrogen production has high CO₂ emissions

Global H₂ supply ...

- Main share of production is captive (68%) ¹⁾, i.e., hydrogen produced and consumed in-house for producing other products
- Three main technologies to produce H₂

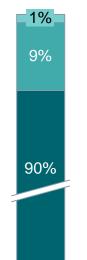
~5%

Electrolysis & others 1)

 Utilize electricity to split water into hydrogen and oxygen

Steam Methane Reforming (SMR)²⁾

 Synthesis from steam and natural gas, today most economic method


Coal gasification / partial oxidation

Produced as part of, e.g., chemical processes in refineries

... meets global H₂ demand

Hydrogen market is divided in three sectors while industry being by far largest one

Mobility 3) 4)

- Expected growth by green H₂
- Penetration of FCV and synfuels are key drivers

Energy 3) 4)

 Expected growth due to need for storage of curtailed renewables

Industry 4)

- Includes chemical, refineries, metal processing and others
- Expected growth due to CO₂ emissions regulations

Electrolysis is a CO₂ neutral production method for hydrogen

Source: 1) Freedonia; 2) Hydrogen Generators GIA; 3) Navigant; 4) CertifHY

Unrestricted © Siemens AG 2018

Hydrogen is multi-functional It connects Energy, Mobility and Industry

Volatile electricity Grid **Conversion/ storage Applications** generation integration Exports for different applications **Photovoltaic** H₂ generation Industry Hydrogen for ammonia production, petroleum refinement, metal production, flat glass, etc. **Mobility PEM electrolysis** Hydrogen as alternative fuel or as feedstock for synthetic fuels Wind power **Energy** Hydrogen blending (gas grid) Remote energy supply/Off-grid

Why a Proton Exchange Membrane (PEM) electrolyzer system?

PEM is the natural choice for our future renewable energy system

PEM is clean by nature

PEM is competitive

- Incredibly fast start-up and shutdown
- Highest operational flexibility
- Black start capability

- ➤ No CO₂ emissions, unlike SMR, which emits 8-10 kg CO₂ for each kg of hydrogen
- > There is nothing except water, hydrogen and oxygen in the system
- Highest hydrogen purity >99.9%
- Oxygen as the only "contaminant"
- No aggressive chemical electrolyte (e.g. KOH (**) in Alkaline systems)

- Competitive hydrogen price per kg at green electricity prices <3 ct/ kWh
- Small footprint compared to Alkaline systems
- Significantly lower OPEX compared to Alkaline systems due to maintenance-free stack

PEM = Proton Exchange Membrane; SMR = Steam Methane Reforming; OPEX = Operational Expenses **Unrestricted © Siemens AG 2018**

We have references for our Silyzer portfolio in all applications

Year	Country	Project	Customer	PEM electrolysis capacity	Product offering	
2015	Switzerland	Energy System Integration Platform	Paul Scherrer Institut	100 kW/ 200 kW (peak)	Container solution	(
2015	Germany	Argon purification/ Use of H ₂ for HRS	Air Liquide, Duisburg	300 kW	Container solution	
2016	Germany	Energy Lab 2.0	Karlsruhe Institute of Technology	300 kW	Container solution	
2015	Germany	Energiepark Mainz	Municipality of Mainz	3.8 MW/ 6 MW (peak)	Pilot Silyzer 200	$\overline{\langle \mathbf{f} \rangle}$
2016	Germany	Wind Gas Haßfurt	Municipality of Haßfurt Greenpeace Energy	1.25 MW	Silyzer 200	$\overline{\langle \mathbf{f} \rangle}$
2017	Germany	H&R	H&R Ölwerke Schindler GmbH	5 MW	Silyzer 200	
2018	Austria	H2Future*	voestalpine, Verbund, Austrian Power Grid (APG)	6 MW	Pilot Silyzer 300	
	•	·	·	·	<u> </u>	

^{*)} This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 735503. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovative programme and Hydrogen Europe and NERGHY.

H2Future

The next step towards large scale hydrogen electrolysis

- EU funded project for demonstration of largescale rapid response electrolysis
- Project consortium members: voestalpine, K1-MET, Verbund, ECN, APG, Siemens
- Installation site: voestalpine steel works
- Country: Austria
- Installed: planned end 2018
- Product: Silyzer 300

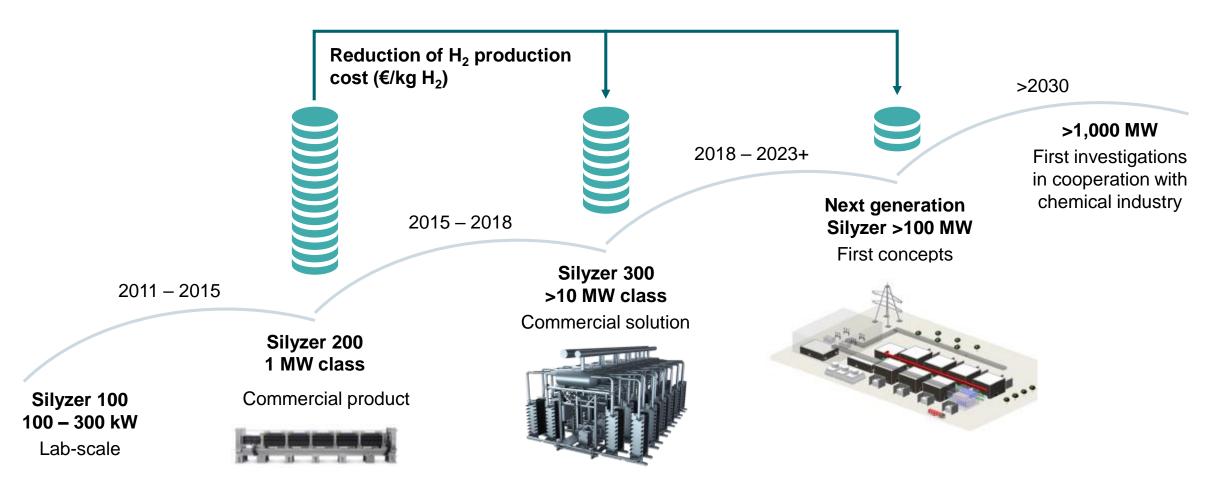
Use cases

6_{mw}

rated power based on Silyzer 300

Challenge

 Integrate a new generation of PEM electrolyzer into the processes and infrastructure of an existing steel work


Customer Benefits

- Gather experience with multi-megawatt PEM electrolysis as decision base for future large scale decarbonization projects
- Provide grid services for an electricity market with growing rates of renewable energy

Silyzer portfolio scales up by factor 10 every 4-5 years driven by market demand and co-development with our customers

SIEMENS Ingenuity for life

Silyzer portfolio roadmap

Flanking by politics requested to accelerate the implementation of energy transition with green hydrogen

Promising examples of outstanding hydrogen business developments

United Arab Emirates 1st steps towards a hydrogen society are being defined; mobility and energy applications will be

implemented

South Australia Moonshot city concept. First "city concept" based on autonomous energy supply by green hydrogen are

under intense discussion

Political support requested

Refinement of the eligibility criteria by EU or national bodies, to allow market participants to opt for large scale green hydrogen solutions, considering market driven parameters

Adjust focus from R&D funding of projects towards commercial use cases in industries with most efficient, green H2 generation costs

Set clear conditions for distinctive energy transition

Increase awareness of the value of hydrogen as a safe solution

Contact page

Eric Klein

Head of Global sales and project management

Hydrogen Solutions

Guenther-Scharowsky-Str. 1 91058 Erlangen

Mobile: +49 172 35 44 267

E-mail:

Eric.Klein@siemens.com

siemens.com/silyzer