

European Developments in Electrolyser Technology: Technical and Economic Outlook

N. Lymperopoulos

POWER TO GAS

Conference *Antwerp, 7 June 2018*

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Strong public-private partnership with a focused objective

EU Institutional Public-Private Partnership (IPPP)

To implement an optimal research and innovation programme to bring FCH technologies to the point of market readiness by 2020

Fuel Cells & Hydrogen Joint Undertaking (FCH 2 JU)

Hydrogen Europe

Research

Research grouping over 60 members

FCH JU programme implementation

Energy

- Hydrogen production and distribution
- Hydrogen storage for renewable energy integration
- Fuel cells for power & combined heat & power generation

Transport

- **Road vehicles**
- Non-road vehicles and machinery
- **Refuelling infrastructure**
- Maritime rail and aviation applications

Cross-cutting

E.g. standards, safety, education, consumer awareness ...

Hydrogen Production Technical Coverage

95% of FCH JU support to green Hydrogen production

What's New in H₂: Riding the "P2H & H2X" wave

Greening industry, providing electricity grid services, injection in the NG grid

What's New in H₂: Riding the "P2H & H2X" wave

Electricity grid congestion drives Early business cases

electrolysers by 2025

Ban

WACC on CAPEX: 5% Project lifetime: 20 years		Ū.									
	SC mobility (Albi, France)		Food industry (Trige, Denmark)		Large industry (Lubeck, Germany)			EU-28 market	Cumulative	Markot valuo	
	2017	2025	2017	2025	2017	2025	potential	market size	Market value		
Primary market H2 volume (t/year)	270	950	900	900	3 230	3 230		2017	1500 MW	2.6 B€	
Average total electricity price for prim. market €/MWh)	44	45	38	47	17	26		2025	2800 MW	4.2 B€	,
let margin without grid services (k€/MW/year)	39	71	228	248	-146	30					
et margin with grid services (k€/MW/year)	159	256	373	393	-13	195					
hare of grid services in net margin (%)	75%	72%	39%	37%	-	85%					
avback time without grid services (vears)	11.0	9.0	4.6	3.7	-	8.4					
avback time with grid services (years)	8.0	4.5	3.4	2.7	-	3.5					
Key risk factors	Taxes & H2 price Size of f Injection FCR val	Grid fees leets tariff	 H2 price Taxes & FCR value 	Grid fees le	 Taxes & FCR val Carbon 	Grid fees ue price					

Low electricity cost, demand for H2, provision of grid services, injection in NG grid – Short Term potential of 2.8 GW of

Integration of Renewables in the Power Sector

Hydrogen can be produced from excess renewable energy and used outside the power sector – Long term potential of 170GW of electrolysers by 2050

Electrolysis Research and Demonstration

The potential of Hydrogen for the greening of industry has lead to fast capacity increase and cost reduction

2014: Greening light Industry & Transport

The Hybalance Project: Producing green H2 from wind, feeding metal industry and bus fleet

Co-ordinated by Air Liquide 1.2 MW PEM electrolyser by Hydrogenics Installed in Hobro, Denmark **Commissioned February 2018** Feeding light industry (sinter metal, Hobro) and buses (Aalborg) Receiving support from the FCH JU but also ForskEL (Danish framework)

2015: Greening steel surface treatment Industry

The GrInHy Project: Green Industrial Hydrogen via Reversible High-Temp Electrolysis

Salzigitter, Germany

- 4.5 Meuro, 100% FCH JU funding

150kW Solid Oxide Electrolyser- displace 10% of current consumption of 4MNm3 of H2 per year used in the annealing process presently H2 is provided by tube trailers Can operate in reverse mode as fuel cell running on NG

2016: Greening the Steel Industry

The H2Future Project: Producing green H2 from hydro power, Injecting in steel industry, providing grid services

Co-ordinated by Verbund (electricity company of Austria) 6MW PEM electrolyser by Siemens Installed in voestalpine (steel industry) in Linz H2 injected in coke oven gas but view is direct iron ore reduction using H2 Favourable electricity tariffs in Austria for electrolysers Steel industry a great proponent of green H2 at Commission level

2016: Greening the Food Industry

The Demo4Grid Project: Producing green H2 from hydro power, combustion in boiler of food industry

Hosted by Mpreis (food industry, Tirol) 4MW alkaline electrolyser by IHT Favourable electricity tariffs in Austria for electrolysers H2 4 Heat

2017: Greening the Refining Industry The Refhyne Project: Producing green H2 from renewables, displacing grey hydrogen

Co-ordinated by SINTEF 10MW PEM electrolyser by ITM Power Installed in Shell refinery in Wesseling, Germany

Displacing 1% of 180,000 tons annual consumption, supporting the balancing of the grid

2018: Greening the ? Industry

Demonstration of a large-scale (min. 20MW) electrolyser for converting renewable energy to hydrogen

20MW, 11MEuro of FCH JU support Rapid response for grid services Minimum footprint 52kWh/kg H2 Steel and refinery industries excluded

Safeguarding Europe's leading position through R&D

Vibrant community of OEMs and R&D institutions

2017: R&D on Game changer electrolysers

Push the limits of cost, efficiency, lifetime, operability

NEPTUNE project

- self-pressurizing 100 bar PEM electrolyser system of 48-115 kW current densities of 4-8 A·cm-2.
- at least 4,000 hours (cumulative, 2000 h steady-state, 2000 h cycled operation))

PRETZEL project

- Cell concept capable of 100 bar, PEM electrolyser system of 25 kW
- current densities of 4-6 A·cm-2, non-precious metal coatings
- at least 2000 h operation

GAMER project

- Tubular proton ceramic electrolyser @ 30 bar, 10kW
- current densities of 4-6 A·cm-2.
- Operation @ 500-700 C

Harmonisation of electrolyser Testing Protocols

2 parallel efforts

1. JRC standardisation of testing @ cell and stack level: two documents for public consultation

JRC VALIDATED METHODS, REFERENCE METHODS AND MEASUREMENTS REPORT

EU Harmonised Polarisation Curve Test Method for Low Temperature Water Electrolysis

T. Malkow, A. Pilenga, G. Tsotridis, G. De Marco

2. QUALYGRIDS project standardisation of testing @ system level

Summary

- The FCH JU has consistently provided support to electrolyser development and demonstration ALK elys @ atm. cost 1,200 – 850 Euro/kw for 1 – 5 MW resp. with 58-52 kWh/kg H2 PEM elys @ 30 bar cost 1,500 – 1,300 Euro/kw for 1 – 5 MW resp. with 63-61 kWh/kg H2 Continued support to RD&D will allow improvements to cost and availability
- Considerable prospects for the electrolyser industry, supported by the emerging Power to Gas market for Sectoral Integration

Nikolaos Lymperopoulos

Project Officer Nikolaos.Lymperopoulos@fch.europa.eu

For further information

www.fch.europa.eu

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

