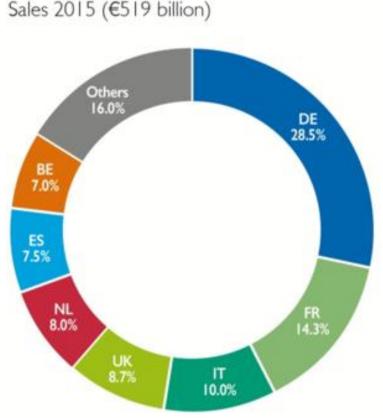
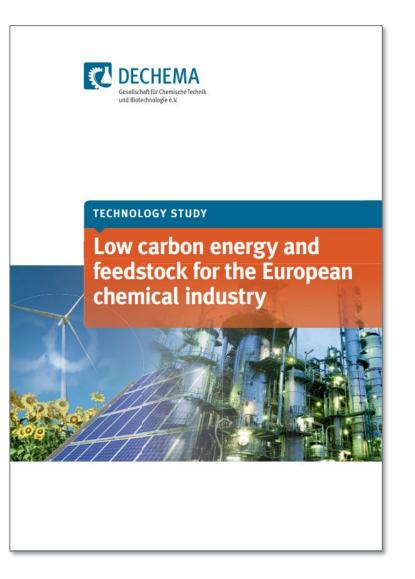
Hydrogen and breakthrough technologies in the chemical industry

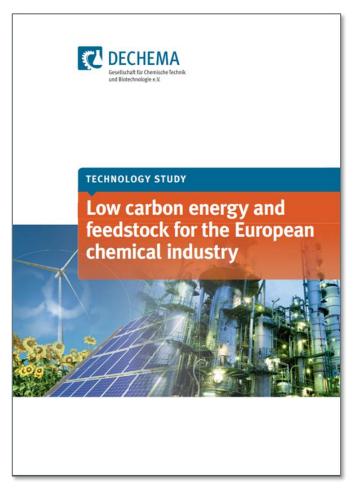

Power to Gas Conference, Antwerp May 7, 2018

Pierre Barthélemy, Cefic Executive Director Innovation Programme

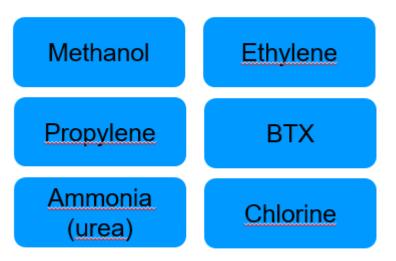
The question: What we offer to EU and what we need to remain competitive?

- ✓ 1.16 million of jobs
- ✓ 29 000 companies, 96% SMEs
- ✓€519 billion of revenues
- State of the art innovative solutions helping EU to meet its societal challenges
- = key EU economic sector




Dechema study 2016-2017

Dechema – The purpose of the study



- To provide quantitative data as input to the discussion on the future of the European chemical industry and the transition towards a carbon neutral society.
 - Promising low carbon technologies
 - Potential impact on CO₂ emissions reduction
 - Technological and financial limitations and barriers

Study scope

Low-carbon chemical production

accounting for 3/3 of the sector's GHG emissions

+ Low-carbon fuels production and use

Methanol, bioethanol, synfuels

Not included: Impact of chemical products on GHG savings in other sectors

Technological options

Low carbon power supply

Industrial symbiosis

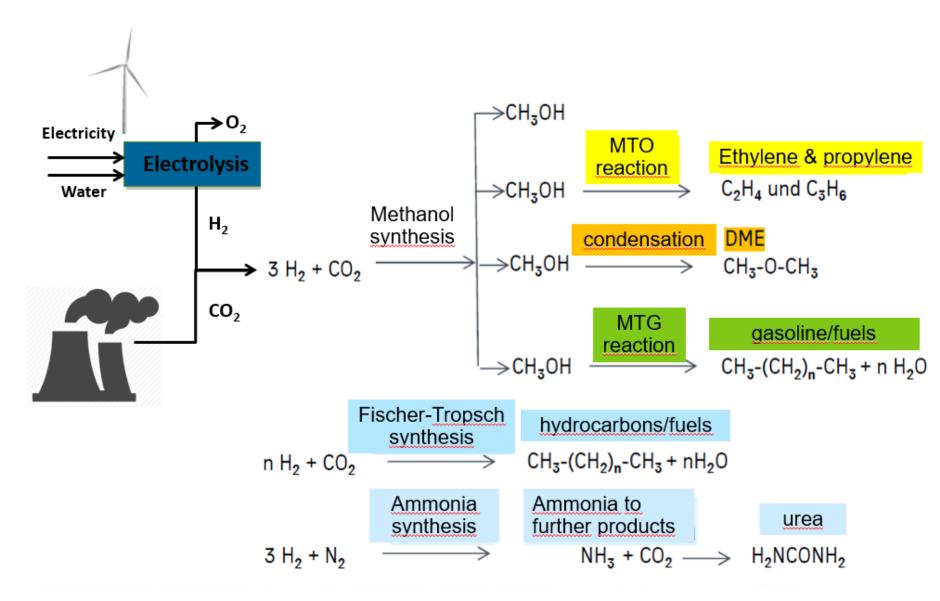
Power to heat

Energy efficiency

Overview of alternative production routes

Hydrogen/CO₂-based production routes

- Methanol via hydrogen and CO₂ (TRL 7)
- Ethylene and propylene via hydrogen-based methanol (TRL 8-9)
- BTX via hydrogen-based methanol (TRL 7)
- Synthetic diesel and kerosene via H₂-based syngas and FT (TRL 5-7)
- Ammonia and urea via hydrogen and CO₂ (TRL 7)


Biomass based routes

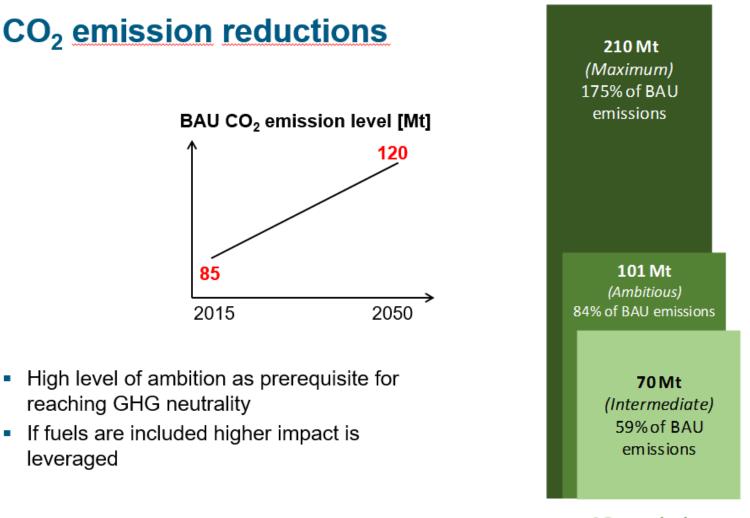
- Methanol from biomass (TRL 7)
- Ethanol from biomass (TRL 7-9)
- Ethylene from biomass (TRL 7-9)
- BTX from biomass (TRL 5-6)

Electricity based processes

- Chlorine production (TRL 9)
- Power to Heat

CO₂ valorization with H₂

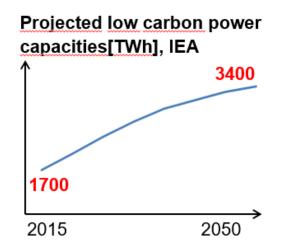
Scenarios


Business as Usual; low limit scenario assuming required extension of existing capacities, but no implementation of new technology options and no further advancement of efficiency measures

Intermediate; continuous efficiency improvements of 1% annually and slow starting, but steadily increasing deployment of breakthrough technologies; assumptions: policy measures to support emission reduction and pathways become sufficiently competitive, no early replacement of old plants

Ambitious; consequent implementation of technology options, fuel sector fully supports transition to carbon-neutral fuels; assumptions: minimum time for R&D, pilot or demonstration activities, commercial deployment without delays; full policy support and no economic constraints as hurdle; old plants are replaced early, decommissioning of depreciated plants.

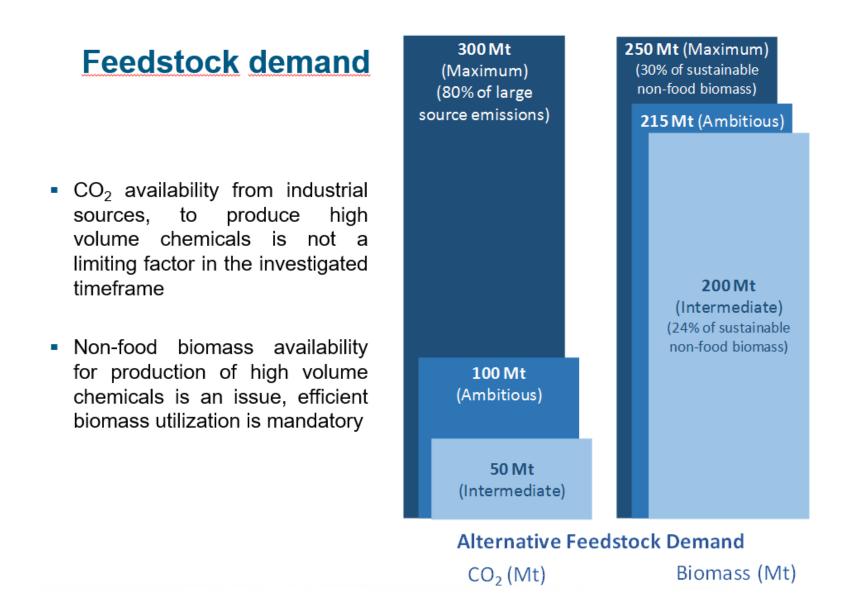
Maximum scenario; full carbon neutrality of the chemical industry and fuel sector by 2050 via a mix of the described technologies


Dechema report - Main conclusions (1)

CO₂ emission reductions (Mt)

Dechema report - Main conclusions (2)

Low-carbon power demand for electricity-based processes


- Much more ambitious extension of lowcarbon power capacities required, at least a factor 2 of the level currently anticipated by the IEA
- Critical factor outside the control of the chemical industry

4900 TWh (Maximum) 140% of anticipated capacities 1900 TWh (Ambitious) 55% of anticipated capacities 960 TWh (Intermediate) 30% of anticipated

Low-carbon power Demand (TWh)

capacities

Dechema report - Main conclusions (3)

Dechema report - Main conclusions (4)

Economic challenges

- Very high investment required
- Production cost levels from 2 (e.g. methanol) to 5 (e.g. BTX) times higher than fossil-based products; driven by electricity and feedstock cost
- Economic gap can only partly be reduced by research and innovation

Investment Requirements (bill. €/y)

Research, development and innovation requirements

	Area	RD&I topic
	Power to heat	Heat pump technology
	Power to hydrogen	Hydrolysis technology (PEM, AEM, SOE,)
	Alternative H ₂ production	Pyrolysis, photolysis, thermochemical process & CSP
	Power to chemicals	Electrolysis improvement Electrochemical and –catalytic process improvement Plasma technology
	Biomass	Lignocellulosic technologies
	Alternative chemical production	New synthesis routes for Ammonia and Olefins (e.g. direct electrocatalytic conversion)
	Circular economy and industrial symbiosis	Valorisation of waste streams and residues

Key messages

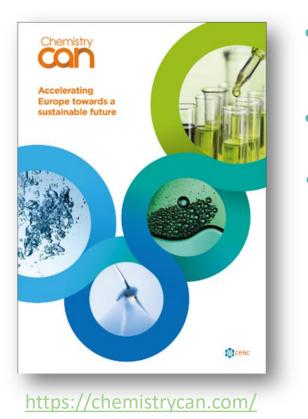
Access to cheap and abundant low carbon energy as prerequisite

Biomass availability (focus the use of biomass feedstock on highly functionalised chemical components with high biomass utilisation efficiencies)

Large investments

Production cost not competitive

Challenges


Initiate ambitious R&I programmes, priority topics are e.g. efficient hydrogen generation and better valorization of biomass

Engage in public-private partnerships to enable deployment and risk sharing

Intensify the dialogue between public and private stakeholders, facilitate more (cross-sectorial) collaboration models and strong policy support

The Cefic Sustainability Charter

• Enabling role of the European chemical industry for a sustainable society

Supporting role for Cefic

Roadmap to progress in Sustainable Development:

Thank you

pba@cefic.be www.cefic.org