Gasuhe crossing borders in energy

P2G, Zwijnaarde, 18 September 2019

Hydrogen in an existing natural gas pipeline, which aspects to deal with?

Alfons Krom

Key facts hydrogen pipeline X-804

- Owned by Gasunie Waterstof Service, a subsidiary of N.V. Nederlandse Gasunie (Dutch TSO)
- Steel pipeline:
 - existing 11,7 km 16"
 - new 700 m 12"
- New begin and end valve stations
- No compression or metering
- Adjusted maintenance, repair and emergency procedures

The hydrogen pipeline X-804

Similarities Hydrogen (H_2) and Methane (CH_4)

	Colourles	Odourless	Flammable	Explosive	Corrosive
Methane CH₄	yes	yes	yes	yes	no
Hydrogen H ₂	yes	yes	yes	yes	no

methane: main component of natural gas

Differences Hydrogen and Methane (1/2)

	Relative density (air = 1)	Explosic (lower & [%	on limits & upper) 5])	Ignition energy [mJ]	Combustion energy [MJ/m³]
Methane CH₄	0,55	4,4	17	0,26	32
Hydrogen H ₂	0,07 diffuses more rapidly	4,0	77	0,02 ignites easily	11 less energy

Differences Hydrogen and Methane (2/2)

	Flame	Molecule size [pm]	Decompression Joule-Thomson [°C/bar]	Embrittlement
Methane CH ₄	blue visible	H 108.70 pm H 109.5 H	0,4 colder if decompressed	no
Hydrogen H ₂	colourless hardly visible	H −− H _{74.14 pm} possibly more emission	-0,03 warmer if decompressed	possible

The interaction of hydrogen atoms and steel may have a negative effect on the mechanical behaviour of steel. The general term for this degrading effect is *hydrogen embrittlement (HE).*

HE: Hydride forming

H₂ pipeline: no chemical reaction between hydrogen and iron

HE: Hydrogen attack

CH4 gas pockets (blue)

H is driven into the steel by heat & pressure, and reacts with the Fe3C to form CH4 gas

H₂ pipeline: no HA, hydrogen pressure and temperature is too low

Gasune crossing borders in energy

HE: Hydrogen-induced cracking recombination of H-atoms in existing defects

Hydrogen from the weld electrode may cause cold cracking

H₂ pipelines: no cold cracking because hydrogen concentration is too low

Hydrogen concentration in steel source of H:

source	hydrogen concentration [at. ppm]	equivalent pressure [bar (a)]
81 bar H ₂	0,25	81
3 ml H ₂ /100 g weld consumable	150	15000
1 bar H ₂ S ^c	185	16000
cathodic charging (overprotection cathodic protection)	650	21000

0,25 atomic ppm H = 1 hydrogen atom on 4 million iron atoms

a) K. van Gelder et al., Hydrogen-induced cracking: determination of maximum allowed H₂S partial pressures, Corrosion, vol 42, no 1, 36-43 1986
b) D.X. He et I., Effect of cathodic potential on hydrogen content in a pipeline steel exposed to NS4 near-neutral pH soil solution, Corrosion, 778-786 2004
c) M. Tröger et al., Investigations on hydrogen assisted cracking of welded high-strength pipes in gaseous hydrogen, Steely Hydrogen Conference proceedings 2014

HE: decrease in ductility in H₂

L. Briottet, I. Moro, P. Lemoine, Quantifying the hydrogen embrittlement of pipe steels for safety considerations, International Conference on Hydrogen Safety, 4th, San Francisco, 2011

HE: enhanced fatigue crack growth in H₂

J. Solin, N. de Miguel, Labscale – Full scale experimental comparison - Mechanisms, Modeling, Experiments and Pressure Vessel Design, Mathryce dissemination workshop, Paris, September 18, 2015

Fatigue crack/defect growth in H₂ effect of frequency and old and new steel

0,01 μ m/cycle, 100 year 1 cycle per day = 0,37 mm crack growth

A.J. Slifka, Fatigue Measurement of Pipeline Steels for the Application of Transporting Gaseous Hydrogen, Journal of Pressure Vessel Jechnology (2018)

Absorption of hydrogen atoms in a steel wall effect of oxide layer

HE: enhanced fatigue crack growth in H₂ effect of oxygen

frequency 0,00164 s⁻¹, 66 bar H_2 , steel X52=L360

Scenario for hydrogen-enhanced fatigue crack growth

Nothing new

"The major technical problem with transmission of hydrogen gas at high pressure is the possibility of slow fatigue crack growth from existing cracks or crack-like defects in the pipe body or weld."

E. Anderson et al. Geneva Research Centre in "Analysis of the potential transmission of hydrogen by pipeline in Switzerland"

Proceedings of the 2nd World Hydrogen Energy Conference, Zurich, Switzerland, 21-24 August **1978**

. . . .

Conclusion (1/4)

Where hydrogen gas is being transported in pipelines at ambient temperatures and moderate pressures, the relevant hydrogen degradation mechanism is hydrogen-enhanced fatigue crack growth. When taking this degradation mechanism into account, 100% hydrogen gas up to the design pressure can be transported in existing natural gas pipelines without affecting the integrity of the pipeline during its lifetime.

Conclusion (2/4)

Though the integrity may not be affected by the hydrogen, it does not mean that hydrogen can actually be transported in the existing pipeline. Hydrogen is a smaller molecule than the methane molecule and the ignition energy is much lower.

Conclusion (3/4)

So before hydrogen can be transported in an existing pipeline the following has to be considered:

- cleanliness of the pipeline
- explosive safety of equipment (ATEX)
- is the leak tightness of existing values (internal and external) sufficient?
- is the leak tightness of existing flanges sufficient?
- do the risk contours of the pipeline become larger because the risk assessment for hydrogen is different?
- can operational and maintenance activities be performed in

a safe manner?

Conclusion (4/4)

- no in-line inspection (pigging) (embrittlement of magnets)
- no live welding possible
- venting to air or flaring?
- measuring equipment may not measure H₂
- oxygen is a gas that can mitigate the effect of hydrogenenhanced fatigue.