

ROADMAP STUDY POWER-TO-GAS (PTG) IN FLANDERS

Final results

Presentation for Congres Waterstofregio 2.0

Antwerpen, Belgium, 24.10.2016

Denis THOMAS, EU Regulatory Affairs and Business Development Manager Renewable Hydrogen, Hydrogenics Europe NV

POWER-TO-GAS ROADMAP FOR FLANDERS IN A NUTSHELL

- <u>Duration:</u> 14 months (01/10/2014 31/01/2016)
- Funding : Flemish Region, Belgium

Vlaamse overheid

Project partners:

• <u>Coordinator:</u> Hydrogenics

POWER-TO-GAS ROADMAP FOR FLANDERS OBJECTIVES

- Analyze the actual (2015) and future (2030-2050) status of Power-to-Gas (PtG) in Flanders (technology, economics, legal framework, market opportunities)
- Study various PtG business cases and identify early markets
- Elaborate a **roadmap** which will serve as the backbone for the actions of a **Power-to-Gas Cluster** in Flanders
- **Prioritize the actions** in order to create a **PtG framework** for the development of projects in Flanders and abroad
- Indentify potential **demonstration projects** in Flanders

OVERVIEW OF CALCULATED P2G BUSINESS CASES

Case	Size electrolyser	Typical application	Reference product
POWER-TO-INDUSTRY			
PtH _{2 (large)} : Power-to- Hydrogen (large scale)	100 MW	H ₂ as feedstock in large industry (Ammonia production or refinery)	H ₂ produced with onsite SMR from CH ₄ or H ₂ delivered by pipeline
PtH _{2 (small)} : Power-to- Hydrogen (small scale)	1.2MW	H ₂ as feedstock in small to medium size industry	H ₂ delivered by tube trailers trucks
POWER-TO-GAS			
PtH _{2 (blend)} : Power-to-Gas (direct injection)	15 MW	Direct injection of hydrogen in gas grid	Natural gas from gas grid
PtCH₄: Power-to-Gas (methanation)	15 MW	Transformation H_2 into SNG and injection in gas grid	Natural gas from gas grid
POWER-TO-MOBILITY			
PtFCEV _(cars) : Hydrogen Refuelling Station for cars	500 kW	Hydrogen as a fuel for FCEV (cars)	Diesel
PtFCEV _(buses) : Hydrogen Refuelling Station for buses	2.2 MW	Hydrogen as a fuel for FCEV (buses)	Diesel
POWER-TO-FUELS	•	•	•
PtCH₃OH _(fuel) : Power-to- Methanol (as a fuel)	50 MW	Partial substitution of diesel with bio-methanol produced from H_2 and CO_2 in a methanolisation process.	Diesel
POWER-TO-POWER			
PtP _(small) : Power-to- Power (small scale)	500 kW	Hydrogen-based electrical energy storage in medium-sized industry with own renewable energy production (<i>prosumer</i>)	Power from the grid
PtP _(large) : Power-to- Power (large scale)	400 MW	Hydrogen-based electrical energy storage (at utility scale)	Power from the grid

BUISNESS CASES BUILDING BLOCKS

- RES development in Belgium towards 2050
- Power price duration curve for Belgium
- Grid fees
- Electrolyser + cell stack replacement model
- Methanation
- Hydrogen storage and compression
- Hydrogen refueling Station + Mobility (buses and cars)

- Methanolisation
- Fuels cells
- Hydrogen prices
- CO₂ prices
- Ancillary services
- Prosumer model (self-consumption)
- Societal benefits
- Physical and Property data

Grid connected systems, green/renewable hydrogen certification via guarantees of origin certificates (cf. <u>www.certifhy.eu</u>)

ELECTRICITY PRICE 2015-2030-2050 ASSUMPTION

- Based on a German model
- Use the correlation between power price, RES production (wind + solar) and power demand
- Back-up power assumed with gas fired power-plants

ELECTRICITY PRICE 2015-2030-2050 ASSUMPTION

POWER-TO-INDUSTRY (LARGE SCALE) LCOH+ VS OPERATING HOURS

POWER-TO-INDUSTRY (LARGE SCALE) WATERFALL GRAPH: LC_{MAX}, LC_{MIN}, LC_{SOC}

POWER-TO-INDUSTRY (SMALL SCALE) LCOH+ VS OPERATING HOURS

POWER-TO-GAS DIRECT INJECTION, METHANATION, BIOMETHANE

POWER-TO-GAS POTENTIAL IN BELGIUM FOR DIRECT INJECTION

POWER-TO-MOBILITY: HYDROGEN REFUELING STATION 50 CARS/DAY : LC_{MAX} vs OPERATING HOURS

CASES COMPARISON 2015-2030-2050 « HOT » MAP

	2015	2030	2050
Power-to-Industry - small scale			
Power-to-Industry - large scale			
Power-to-Gas - direct Injection			
Power-to-Gas - synthetic natural gas (methanation)			
Power-to-Fuel - methanol			
Power-to-Mobility - HRS for cars			
Power-to-Mobility - HRS for buses			
Power-to-Power - small scale			
NB: This table refers to the analysis of the different business cases in a 'business as-usual'			

scenario assuming no fundamental policy changes.

CASES COMPARISON 2015 ALLOWABLE POWER PRICE FOR BREAK-EVEN

CASES COMPARISON 2030 ALLOWABLE POWER PRICE FOR BREAK-EVEN

CASES COMPARISON 2050 ALLOWABLE POWER PRICE FOR BREAK-EVEN

P2G ROADMAP FOR FLANDERS MAIN CONCLUSIONS

- Power-to-Gas is a clear answer to the objectives of the **energy policy** in Flanders: environment, competition, security of supply, public acceptance
- **Fundamental changes are expected** in the power, gas, industry and transport markets driven by ambitious policy (higher CO₂ price, more renewables, clean transport, green gases...)

A supportive regulatory framework is needed including:

- Removal of existing barriers mainly due to the absence of specific legislation addressing hydrogen and P2G (sector coupling)
- Setting up a green/renewable hydrogen certification mechanism
- Provision of a financially attractive environment (pull and push measures) to stimulate investments in H₂ and P2G in Flanders

Other actions are needed

- Supporting the roadmap execution and the P2G cluster
- Showing the example (ex: FCEV fleets for ministries)
- Communication, awareness and education.

P2G ROADMAP FOR FLANDERS FINAL REPORT IS AVAILABLE

http://www.power-to-gas.be/roadmap-study

Webinar on 26 October 2016 at 2 pm Registration required:

isabel.francois@waterstofnet.eu

- This roadmap was a 1st essential step to:
 - confirm the P2G opportunity
 - identify the challenges and priorities
 - increase awareness on the topic
- The creation of a P2G cluster was the 2nd step to start the implementation of the roadmap with a broad industry involvement
- Political commitment and support will be essential for future steps !

BEDANKT VOOR UW ANDACHT !

More info: <u>www.power-to-gas.be</u>

Project coordinator Denis THOMAS Renewable Hydrogen - EU Regulatory Affairs and Business Development Manager Hydrogenics Europe NV Mobile: +32 479 909 129 Email: <u>dthomas@hydrogenics.com</u>

